相關(guān)系數(shù)是用以反映變量之間的相關(guān)關(guān)系程度的統(tǒng)計指標。
其取值范圍是[-1,1],當取值為0時表示不相關(guān),取值為[-1,0)表示負相關(guān),取值為(0,-1],表示負相關(guān)。文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html
目前常用的兩種相關(guān)性系數(shù)為皮爾森相關(guān)系數(shù)(Pearson)和斯皮爾曼等級相關(guān)系數(shù)(Spearman)文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html
簡介
1.皮爾森相關(guān)系數(shù)評估兩個連續(xù)變量之間的線性關(guān)系。文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html
文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html
其中:文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html
文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html
-1 ≤ p ≤ 1文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html
p接近0代表無相關(guān)性文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html
p接近1或-1代表強相關(guān)性文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html
2.斯皮爾曼相關(guān)系數(shù)評估兩個連續(xù)變量之間的單調(diào)關(guān)系。在單調(diào)關(guān)系中,變量趨于一起變化,但不一定以恒定速率變化。文章源自四五設(shè)計網(wǎng)-http://m.wasochina.com/44182.html

其中:

N是觀測值的總數(shù)量
斯皮爾曼另一種表達公式:


表示二列成對變量的等級差數(shù)。
區(qū)別
Pearson和Spearman相關(guān)系數(shù)的范圍可以從-1到+1。
當Pearson相關(guān)系數(shù)為+1時,意味著,當一個變量增加時,另一個變量增加一致量。
這形成了一種遞增的直線。
在這種情況下,Spearman相關(guān)系數(shù)也是+1。

如果關(guān)系是一個變量在另一個變量增加時增加,但數(shù)量不一致,則Pearson相關(guān)系數(shù)為正但小于+1。
在這種情況下,斯皮爾曼系數(shù)仍然等于+1。

當關(guān)系是隨機的或不存在時,則兩個相關(guān)系數(shù)幾乎為零。

如果關(guān)系遞減的直線,那么兩個相關(guān)系數(shù)都是-1。

如果關(guān)系是一個變量在另一個變量增加時減少,但數(shù)量不一致,則Pearson相關(guān)系數(shù)為負但大于-1。
在這種情況下,斯皮爾曼系數(shù)仍然等于-1

相關(guān)值-1或1意味著精確的線性關(guān)系,如圓的半徑和圓周之間的關(guān)系。
然而,相關(guān)值的實際價值在于量化不完美的關(guān)系。
發(fā)現(xiàn)兩個變量是相關(guān)的經(jīng)常通知回歸分析,該分析試圖更多地描述這種類型的關(guān)系。
其他非線性關(guān)系
Pearson相關(guān)系數(shù)僅評估線性關(guān)系。Spearman相關(guān)系數(shù)僅評估單調(diào)關(guān)系。
因此,即使相關(guān)系數(shù)為0,也可以存在有意義的關(guān)系。
檢查散點圖以確定關(guān)系的形式。

該圖顯示了非常強的關(guān)系。
Pearson系數(shù)和Spearman系數(shù)均約為0。
結(jié)論
皮爾森評估的是兩個變量的線性關(guān)系,而斯皮爾曼評估的兩變量的單調(diào)關(guān)系。
因此,斯皮爾曼相關(guān)系數(shù)對于數(shù)據(jù)錯誤和極端值的反應(yīng)不敏感。
以上為個人經(jīng)驗,希望能給大家一個參考



評論